133,791 research outputs found

    Controlled generation of field squeezing with cold atomic clouds coupled to a superconducting transmission line resonator

    Full text link
    We propose an efficient method for controlled generation of field squeezing with cold atomic clouds trapped close to a superconducting transmission line resonator. It is shown that, based on the coherent strong magnetic coupling between the collective atomic spins and microwave fields in the transmission line resonator, two-mode or single mode field squeezed states can be generated through coherent control on the dynamics of the system. The degree of squeezing and preparing time can be directly controlled through tuning the external classical fields. This protocol may offer a promising platform for implementing scalable on-chip quantum information processing with continuous variables.Comment: accepted by Phys. Rev.

    Generation of two-mode field squeezing through selective dynamics in cavity QED

    Full text link
    We propose a scheme for the generation of a two-mode field squeezed state in cavity QED. It is based on two-channel Raman excitations of a beam of three-level atoms with random arrival times by two classical fields and two high-Q resonator modes. It is shown that by suitably choosing the intensities and detunings of fields the dynamical processes can be selective and two-mode squeezing between the cavity modes can be generated at steady state. This proposal does not need the preparation of the initial states of atoms and cavity modes, and is robust against atomic spontaneous decay.Comment: 4 pages,2 figure

    Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states

    Full text link
    We construct coefficient matrices of size 2^l by 2^{n-l} associated with pure n-qubit states and prove the invariance of the ranks of the coefficient matrices under stochastic local operations and classical communication (SLOCC). The ranks give rise to a simple way of partitioning pure n-qubit states into inequivalent families and distinguishing degenerate families from one another under SLOCC. Moreover, the classification scheme via the ranks of coefficient matrices can be combined with other schemes to build a more refined classification scheme. To exemplify we classify the nine families of four qubits introduced by Verstraete et al. [Phys. Rev. A 65, 052112 (2002)] further into inequivalent subfamilies via the ranks of coefficient matrices, and as a result, we find 28 genuinely entangled families and all the degenerate classes can be distinguished up to permutations of the four qubits. We also discuss the completeness of the classification of four qubits into nine families

    Shot noise spectrum of superradiant entangled excitons

    Full text link
    The shot noise produced by tunneling of electrons and holes into a double dot system incorporated inside a p-i-n junction is investigated theoretically. The enhancement of the shot noise is shown to originate from the entangled electron-hole pair created by superradiance. The analogy to the superconducting cooper pair box is pointed out. A series of Zeno-like measurements is shown to destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004

    Linear and field-independent relation between vortex core state energy and gap in Bi2Sr2CaCu2O8+d

    Get PDF
    We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi2Sr2CaCu2O8+δ. The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7-δ. Finally, these states do not show any dependence on the applied magnetic field between 1 and 6 T

    Thresholdless dressed-atom laser in a photonic band-gap material

    Full text link
    We demonstrate the capability of complete thresholdless lasing operation between dressed states of a two-level atom located inside a microscopic cavity engineered in a photonic band-gap material. We distinguish between threshold and thresholdless behaves by analyzing the Mandel's Q parameter for the cavity field. We find that the threshold behave depends on whether the spontaneous emission is or is not present on the lasing transition. In the presence of the spontaneous emission, the mean photon number of the cavity field exhibits threshold behavior indicating that the system may operate as an ordinary laser. When the spontaneous emission is eliminated on the lasing transition, no threshold is observed for all values of the pumping rate indicating the system becomes a thresholdless laser. Moreover, we find that under a thresholdless operation, the mean photon number can increase nonlinearly with the pumping rate, and this process is accompanied by a sub-Poisson statistics of the field. This suggests that the nonclassical statistics can be used to distinguish a nonlinear operation of the dressed-atom laser.Comment: 6 pages 4 figure
    • …
    corecore